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Extension of a simplified method for molecular
correlation energy calculations to molecules containing
third row atoms. 1. Methodological developments
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An extension of a simplified method for molecular correlation energy calcula-
tions to molecules containing third row atoms is presented. In addition to the
use of pseudo-potentials in the calculations, the consequences of this extension
on the different components of the energy partition which is the basic idea
of the method, is analysed. Particular emphasis is placed on the specific role
played by the 3d orbitals in each of the energy components. First, at the
zeroth order, the energy is found to be very sensitive to the optimization of
the 3d polarization functions. Secondly, the internal correlation energy, calcu-
lated by CI, requires the optimization of distinct 3d correlation orbitals to
describe adequately the strong near-degeneracy effects that occur within the
valence space. Finally it is shown that the 3d orbitals contribute partially to
the non-internal correlation energy and that, the “atoms-in-molecule” struc-
tures corresponding typically to all-external contributions are negligible. The
concept of error energy is introduced in place of the non-internal correlation
energy: it includes the relativistic contributions within the semi-empirical
tables. Such tables are presented for second row atoms and for the chlorine
atom. From these tables, predicted values for some atomic term energies,
experimentally undetermined, are derived. The methodological tests are
limited here to the chlorine atom which is chosen for further applications in
the next paper of this series. The conclusions concerning the applicability of
the method to third row atoms are however quite general.
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1. Introduction

In a series of recent papers [1-6] we have developed and extensively tested a
simplified method for molecular correlation energy calculations. The basic idea
of the method is that the large configuration interaction expansions, generally
encountered in the traditional approaches of the correlation problem, can be
avoided by defining an appropriate partition of the correlation energy. The two
components of the partition have been shown to be calculable in an economical
way: the first one (internal correlation energy) is calculated by means of
MCSCF/CI calculations performed on short configurational expansions and the
second one (non-internal correlation energy) is determined by a semi-empirical
“atoms-in-molecule” approach.

Up to now various tests and applications have been presented with successful
comparison with other ab initio calculations and with experimental work. These
results concern the calculation of potential energy hypersurfaces [4], dissociation
and term energies [1, 2, 3, 4], heats of reactions [5], equilibrium geometries and
vibrational frequencies [2, 4]. The systems considered so far were limited to atoms
of the second row and hydrogen atoms, with typically up to 4 second row atoms
and up to 30 electrons.

The success encountered in this previous work encourages us to extend the
application area of the method to molecules containing third row atoms and to
show, as suggested by preliminary results [6], that this extension does not affect
the reliability and the economical character of the method. Although the develop-
ment of the methodology is quite general, and therefore independent of the choice
of a particular atom, we will herein restrict ourselves to numerical applications
involving the chlorine atom only. This choice is governed by the chemical
importance of most molecules containing this atom.

A first paper (I) is devoted to the methological implications of the extension and
to the determination of the necessary numerical data for the chlorine atom. A
second paper (II) presents test calculations on chlorinated molecules as CIO,
HCI, HCI" and NCL

2. The simplified method for molecular correlation energy calculations

In this section we give the guidelines of the method presented in detail in the
previous papers [1-6]. The basic concepts of the method are: the partitioning of
the orbital space into valence' and non-valence spaces and the subsequent
classification of the orbital excitations (limited to the first order of perturbation,
i.e. the biexcitations) into two classes: i) excitations within the valence space,
corresponding to internal correlation energy contributions and ii) biexcitations in
which one or two components leave the valence space, referred to as non-internal
correlation energy contributions. An adequate choice of the zeroth-order
wavefunction (¥,) is of course crucial in order to ensure a proper description

' The valence space is also refeired to as the “H.F. sea”. [7]
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of the considered molecular process. This generally implies the use of a multicon-
figurational zeroth-order wavefunction [2].

The total energy of the system is therefore approximated by the following
partition:

E~Eo+EéORR+Ech>RR (1)

where E, refers to the energy of the zeroth-order wavefunction E{org and ENLpx
to the internal and non-internal correlation energies respectively.

The size of the internal configuration space is relatively small so that a variational
treatment (MCSCF/CI) of the internal correlation energy is possible. Oppositely,
the very large size (in principle infinite) of the non-internal configuration space
justifies the use of a semi-empirical “atoms-in-molecule” approach for this part
of the correlation energy. It consists of expanding the zeroth-order wavefunction
into a linear combination of products of atomic eigenfunctions and of expressing
the molecular non-internal correlation energy as a weighted sum of the corre-
sponding atomic non-internal correlation energies, these last quantities being
accurately determined by semi-empirical calculations. The procedure of this
atomic expansion of the molecular wavefunction is detailed in Ref. [2] and also
discussed in Ref. [6].

3. Basis sets and pseudo-potentials
3.1. Basis set requirements of the method

We have shown in previous work that each term of the partition (1) is characterized
by a specific basis set effect, and have drawn the following conclusions:

i) the zeroth-order energy E, is very sensitive to basis set effects and therefore
an extended basis set of double zeta plus polarization quality is required to
produce meaningful results

i) the internal correlation energy Eogrg can be calculated in the same extended
basis set as E, providing that an iterative MCSCF/CI procedure is performed
to ensure a complete optimization of the valence orbitals. The computation cost
of this iterative procedure rather suggests the use of a minimal basis set, which
is, by definition, a purely valence basis and therefore does not require a major
optimization [2].

The internal correlation energy is thus calculated as the CI energy increment
obtained with the minimal basis set, i.e.:

I
Ecorr = EMCO(min)/CI(min) - EMCO(min)

where the notation MCy(min)/CI(min) has been introduced to designate the
following two-step procedure: an MCSCF calculation is first performed on the
zeroth-order multiconfigurational wavefunction and secondly a CI calculation is
performed on the complete internal configuration space with the orbitals optim-
ized in the first step. The same minimal basis set is used in the two steps.
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iii) The univocal correlation that exists between basis orbitals and atomic valence
orbitals imposes the use of a minimal basis set for the non-internal “atoms-in-
molecule” calculations. The same basis set as that for the internal correlation
energy calculations is chosen.

Up to now, Pople’s standard basis sets have been used for second row atoms
applications, i.e. the 6-31G,,., extended basis set [8] and the STO-3G minimal
basis set [9]. However, as described in the next sections, the introduction of
pseudo-potentials in our calculations requires the use of appropriate basis sets.

3.2. Pseudo-potentials

The increase in the number of core electrons with the third row atoms justifies
the use of a pseudo-potential method in order to replace the ‘“‘all-electron”
variational problem by a *“‘valence electrons” problem of reduced size. Extensive
work in the literature has shown [10] that this approximation does not appreciably
affect the accuracy of the results, as long as the molecular process under study
does not disturb, of course, the electronic distribution of the inner shells.

Here we have adopted the pseudo-potential approach developed by Durand and
Barthelat [10a, 11]. The pseudo-potential operator has the following semi-local
form:

W =

ST WP,

where

+1
PI: Z IIVYIm><YVIml

m=—

is the angular projection operator over the I'™* sub-space of spherical harmonics,
and

n
W(r)y=e "y Cyr'e.
i=1

Numerical values for the parameters appearing in this last expression are tabulated
in Ref. [12].

3.3. Valence basis sets for pseudo-potential calculations

In this work we have used the valence basis sets given in Ref. [12] optimized in
atomic pseudo-potential calculations, with 4s and 4p gaussian primitives
expansions. Two types of contractions are introduced: i) a complete contraction
of the s and p components leading to a minimal basis set and ii) a contraction
of the four s and p components into a (3+ 1) expansion leading to a double zeta
quality basis set. Polarization and correlation 3d functions are optimized in this
work, as discussed in Sect. 5.1 and 5.2.
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4. Programs
The following programs have been used in this work:

i} the ALIS package written by Ruedenberg et al. [13] to perform MCSCF/CI
calculations. We have extended this program to pseudo-potential calculations by
using the routines of the PSHONDO program [14], that evaluate the mono-
electronic integrals including the pseudo-potential contributions. CI calculations
have been performed either by inserting [15] in ALIS the configurations generator
program of the MELD CI program [16] or by using the Whitten’s program [17]
to set up the CI matrix together with the Davidson diagonalization routines [18];
ii) the program PSATOM [19] to optimize atomic basis sets;

iii) the numerical atomic multiconfigurational program written by Froese-Fischer
[20];

iv) the program DINGO written by us to perform non-internal or error energies
calculations.

5. Extension of the method to molecules containing third row atoms
5.1. Zeroth order wavefunction

In Sect. 3 we pointed out the necessity to use an extended polarized basis set to
calculate the zeroth-order energy. Such basis sets can be derived from the tables
of Ref. [12] (see Sect. 3.3), however polarization functions are to be optimized,
since they are not available (except for Na, Si and P).

Although the M-shell is occupied for third row atoms, several calculations [21]
show that polarization effects can be efliciently introduced by d orbitals. In fact,
f orbitals are mainly requested to polarize § orbitals which are never occupied
in the zeroth-order wavefunctions used here. The technique that we have adopted
for optimizing the polarization orbitals is to independently vary the different
parameters of these orbitals and to fit their energy dependence by a polynomial
expression. In Table 1 we present a comparison of the efficiency of different
polarization functions at the SCF and MCSCEF levels of calculation, in order to
choose for further calculations, a basis set which presents a suitable compromise
between the polarization energy lowering (AE) and the relative computation time

Table 1. Influence of the d polarization functions on energy (AE) and relative
CP calculation time (T,,,)

CIO(*11) n,(O) 1 (Ch) AE(eVY) Tel
0 0 0.00 1.0
i 1 1.67 6.3

SCF at 3.0 a.u.
at3.0au 1 2 176 10.0
2 2 1.80 18.0
MCSCF at 3.2 a.u. 0 0 0.00 3.6
1 2 (cont.) 0.97 11.0
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Table 2. Parameters of the optimized 3d polarization functions

Atom Optimized on £ & [ >N
Cl ClO 0.77 —_— 1.0 —_

0.77 0.25 1.0 0.5
Cl HCI™ 0.80 0.21 1.0 0.8
Cl HCl 0.70 0.21 1.0 0.6
O CiO 0.86 — 1.0 —
N NCl 0.67 — 1.0 —

# Contraction coefficients are given for the unnormalized orbitals

(T:o1)- The 3d functions are characterized by the number of Gaussian primitives
(ng) which are contracted (cont.) or not. On the basis of the results of Table 1,
we decided to adopt a one Gaussian 3d function on the oxygen atom and one
two-primitives contracted function on the chlorine atom. The introduction of a
second Gaussian on the chlorine and not on the oxygen atom can be justified
by the fact that the corresponding polarization energy lowering is a factor of two
greater for the chlorine (0.09 eV) than for the oxygen (0.04 eV). This last value
lies at the limit of precision of our calculated energy differences and does not
justify the use of 80% extra computation time. We have also decided to contract
the two chlorine Gaussian functions in order to decrease the MCSCF computation
time, which is very sensitive to the size of the basis set.

The polarization introduced in this way (~1eV) leads to an increase of the
MCSCF time of a factor of three with respect to the reference calculation
performed without polarization orbital.

Finally, in Table 2 we present the parameters of the d-polarization orbitals for
0, N and Cl atoms, optimized on the Cl10, NCI, HCI and HCI" molecules. For
the chlorine atom, we compare the results of the optimization carried out on the
ClO, HCl and HCI" molecules; as can be seen, the parameters of these orbitals
are very close. Moreover, the energy dependence of these parameters is very
slight. Therefore, we obtain the usual result that the polarization functions are
not very sensitive to the chemical environment of the atom on which these
functions are centered. We can thus consider these orbitals as transferable. This
transferability is achieved even in the case where charge transfers occur, as for
instance when going from HCI to HCI". Indeed, we observe a lowering of the
equilibrium energy of HC1" of only 0.02 eV by optimizing the 3d orbital on HCI™
itself in place of HCI. Henceforth, it is the orbital optimized on ClO that will be
used in further calculations.

5.2. Internal correlation energy

As a consequence of the definition introduced in Sect. 2, the internal correlation
energy (E&orr) of an atom or a molecule is obtained by diagonalisation of the
Hamiltonian in the configurational space spanned by all the mono and biexcita-
tions within the so-called ““valence-space” with respect to a given reference (the
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zeroth-order wavefunction). The internal correlation energy corresponds to the
near-degeneracy energy of orbitals belonging to the same shell (i.e. orbitals 2s
and 2p for the shell n=2 of second row atoms). For third row atoms, the
near-degeneracy complex (Layzer complex) n =3 contains the orbital 3s, 3p and
3d so that it is also necessary to optimize 3d correlation orbitals if one wishes
to calculate the internal correlation energy of these atoms as well as that of the
molecules of which they are part. The optimization of the correlation orbital is
carried out in the same manner as it was for the polarization orbital (see Sect. 5.1).

This orbital added to the completely contracted set [12] will provide the minimal
basis set required for this step of the calculation.

5.2.1. Molecular optimization of a 3d correlation orbital

The 3d-correlation orbitals have been optimized by minimizing the energy corre-
sponding to the CI calculation performed on the internal correlation configur-
ational space. Test calculations have been carried out on the ground II state of
the C1O molecule, near its equilibrium geometry. However, since we don’t have
any reference value for the internal correlation energy of the ClO molecule, we
calculated with the same basis set, for each optimized correlation orbital, the
internal correlation energy of the chlorine atom in the ground P state.

This value was compared with the very accurate result obtained by means of a
numerical MCHF calculation performed on the whole near-degeneracy complex
of the atom, in order to test the quality of the optimized correlation orbital.

In Table 3 and in Fig. 1 we present the evolution of the internal correlation
energy of the chlorine atom calculated in the minimal basis set (MB) as a function
of the quality of the 3d correlation orbital optimized on the CIO molecule. One
can see that if this orbital is represented with the help of one Gaussian primitive
(MB4), we can already calculate 90% of the reference (numerical) value. Similarly
to what was done for the polarization orbital, we optimized a correlation orbital
formed by a contraction of two Gaussian primitives (MBS5). It only leads to a
slight relative improvement (~4%) of the calculated internal correlation energy
of the chlorine atom, but it lowers the absolute value by an amount of 0.1 eV,
what is appreciable. We consider this final result as very satisfying and admit
that the internal correlation energy of the C1O molecule is similarly approached,
as suggested by the parallel evolution of the internal correlation energy of Cl
and ClO along with the quality of the optimized correlation orbital illustrated in
Fig. 1.

There are also two other correlation orbitals for the chlorine atom presented.
The first one (MB2) is an attempt to obtain such an orbital by using the option
for basis set optimization of PSATOM. The method would have the advantage
of very easily giving a correlation orbital without performing CI calculations.
Since no 3d orbital is occupied in the ground state configuration of the chlorine
atom, we arbitrarily decided to perform the calculation on the *F state of the
KL 3s*3p*3d configuration. The very bad result obtained when we tried to
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Fig. 1. Evolution of the internal correlation energy of Cl and ClO as a function of the quality of the
3d correlation orbital

Table 3. Calculated internal correlation energy (a.u.) of the chlorine atom as a function of the quality
of the 3d correlation orbital

Minimal basis set Characteristic of the

(MB)? d correlation orbital® ELorr CICP) %
MBI without d 0.0000 0.0
MB2 atomic SCF 0.0002 0.2
MB3 polarization 0.0864 84.0
MB4 correlation (n, = 1) 0.0928 90.0
MB5 correlation (n, = 2) 0.0963 94.0
MCHF numerical 0.1026 100.0

# Same notations as in Fig. 1

b See comments in the text

calculate the internal correlation energy of the chlorine atom with this orbital
was predictable because of the well-known difference between SCF and correla-
tion orbitals. The second one (MB3) is just the polarization orbital discussed in
Sect. 5.1 which gives a reasonable approximation of the internal correlation



Extension of molecular correlation energy calculations I. Methodological developments 377

energy of the atom due to the relative similarity that exists between SCF polariz-
ation and correlation orbitals [22].

We can conclude that we are able to obtain with MBS5 a reliable molecular
correlation orbital. However such a CI optimization on each molecule studied
is long and expensive so that it would be very interesting to obtain a correlation
orbital “transferable” i.e. usable in each molecular calculation without particular
optimization.

5.2.2. Optimization of a transferable correlation orbital

By performing an atomic CI calculation we optimized in a first step a correlation
orbital for the *P state of the chlorine atom. In a second step, we calculated with
this orbital the internal correlation energy of the C10, HCI and HCI* molecules
and compared the values obtained therefrom with the ones obtained using the
correlation orbital specifically optimized for these molecules.

The results of the calculations are presented in Table 4 where we indicate in the
first column the molecule or atom whose internal correlation energy is calculated,
in the second column the system on which the correlation orbital was optimized
and finally in the third column the value (in a.u.) of the internal correlation energy.

For the HC] and ClO molecules, the perfect agreement between the values of
the internal correlation energy calculated with both kinds of correlation orbitals,
the ones optimized for the molecule and the one optimized for the atom, demon-
strates the transferability of the latter.

Let us now turn to the results concerning the C1* and HCI™ ions. The comparison
between the internal correlation energy of CI* and HCI" calculated using a
correlation orbital optimized on these species on the one hand and on Cl on the
other hand shows that i) the correlation orbital optimized on Cl is relatively
inadequate to calculate the internal correlation energy of the ionic species C1*
and HCI™. For instance, for CI' we can only calculate 82% of the reference value
obtained through a numerical MCHF calculation; ii} an optimization on CI*

Table 4. Test of the transferability of 34 correlation orbital

Optimization
Molecule on Eftorr(au.)
ClO R=3.8a.u. Cl1 0.1335
Clo 0.1335
HCl R=24a.u. Cl 0.1005
HCl1 0.1005
HCI" R=3.5a.u. Cl 0.0906
Ccrt 0.0985
HCI* 0.0988
crr Cl 0.0811
crt 0.0929

— 0.0984 (MCHF)
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Table 5. Parameters of the optimized 3d correlation func-

tions

System 13 & ¢° VS
Cl 0.60 0.30 1.0 (.40
Cl10 0.60 0.30 1.0 0.45
HCl 0.60 0.30 1.0 0.40
crt 0.85 0.26 1.0 0.65
HCI™ 091 0.31 1.0 0.72

# The contraction coefficients are given for the unnormalized
arbitals

leads to a correlation orbital that allows us to calculate 94% of the reference
value for the internal correlation energy of CI" and moreover, the comparison
between the internal correlation energy of HCI" calculated with this orbital and
with the one optimized on HCI™ itself shows that it is perfectly transferable. We
then possess 3d correlation orbitals that can be involved without reoptimization
in calculations on chlorinated molecules or molecular ions.

Finally, in Table 5 we present the optimized 3d correlation orbitals for C1(*p),
CI'(’P), Cl1O(°I1), HC}('Y ") and HCI*(*Il). The great similarity between the
correlation orbitals optimized on Cl, C10 and HCI on the one hand and on HCI™
and CI" on the other hand reflects the results of Table 4.

5.3. Non-internal correlation energy

The extension of the “atoms-in-molecule” method to molecules containing third
row atoms requires a detailed investigation of the two following points: first, the
effect of the inclusion of an additional valence orbital (3d orbital) in the atomic
expansion of the zeroth-order wavefunction and secondly the tabulation of the
necessary semi-empirical atomic data. This last point implies the consideration
of a new concept, the error energy, introduced in a previous paper [6] and
discussed in detail hereafter.

5.3.1. Atomic expansion of the zeroth-order wavefunction

The addition of a 3d orbital in the H.F. sea, in addition to the 3s and 3p orbitals,
substantially increases the number of possible ‘“‘atoms-in-molecule” structures
that arise from the expansion of the zeroth-order wavefunction. Typically, for a
second row atom the K 2s™2p" configurations (with m =0 to 2 and n=0 to 6)
can lead to only 256 (L, S, M,;, Ms) eigenstates whereas for third row atoms with
KL 3s™3p"3d’ configurations (with /=0 to 10) this number becomes 262144.
Obviously, the computation time involved in the “atoms-in-molecule” procedure
grows significantly with the size of the atomic eigenfunctions space. In fact one
of the most time consuming steps in this procedure is certainly the linear transfor-
mation that projects the cartesian atomic determinants basis set to the LS eigen-
functions basis set.
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However, we think that this extra computation time can be saved without loss
of reliability, by neglecting in the expansion the contributions of determinants
in which 3d orbitals are occupied. In fact, the neglect of these contributions can
be expected to be small as a consequence of the small occupation probability of
the 3d orbitals in the molecular zeroth-order wavefunctions.

As an example, for the C1O molecule (R =2.7 a.u.) only 6% of the chlorine atom
contributions correspond to KL 3s™3p"3d’ structures (with I # 0), of which ~5%
is equally distributed on the KL 35*3p°3d and KL 35*3p*3d configurations, 0.3%
onthe KL 35°3p”3d configuration and less than 0.05% on the other ones. However
it is important to point out that the approximation we just introduced is not to
completely neglect the 3d-contributions to the non-internal correlation energy.
Indeed, two types of 3d-contributions occur: i) semi-internal ones which consist
in the biexcitation of one 3s or 3p electron to a 3d orbital and a second electron
to a non-valence orbital. ii) all-external ones in which the two electrons involved
in the biexcitations (3d +3s, 3d +3p or two 3d electrons) shift to the non-valence
space.

The first contributions are not neglected here and in fact are taken into account
by a part of the non-internal correlation energies of the KL 3s™3p" configurations.
These contributions are expected to be important as a consequence of the strong
interactions that exist between the 3s, 3p and 3d near-degenerated orbitals.
Moreover the considered configurations are also expected to significantly con-
tribute to the zeroth-order wavefunction expansion. It is the all-external contribu-
tions that we neglect, because they arise from configurations KL 35™3p"3d’ which
are, as mentioned above, not significantly occupied in the expansion of the
zeroth-order wavefunction.

The numerical incidence of the neglect of these 3d-occupied configurations on
the non-internal correlation energies has been estimated to be less than 0.1 eV,
this uncertainty lying within the numerical accuracy of the method.

5.3.2. Semi-empirical atomic data

The determination of the semi-empirical atomic data required for the calculation
of the “atoms-in-molecule” correlation energies will be discussed in the next
sections. It consists in the calculation of the non-internal correlation energies

Eur
1
E,—:CORR Encre

Ecorm x
N
Ecorr
EEx Ee
Fig. 2. Definition of non-internal correlation energy EreL £
and error energy | EX
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corresponding to all the possible LS states arising from the neutral and ionic
configurations of the considered atoms. As illustrated in Fig. 2, each of these
calculations requires the knowledge of the corresponding internal correlation
energy and of the exact non relativistic energy. These two energy components will
successively retain our attention.

5.3.3. Atomic internal correlation energies calculations

By performing numerical MCHF calculations, we calculated the internal correla-
tion energy for the states arising from neutral and ionic configurations of the
chlorine atom.

The internal correlation energy of a given LS state resulting from a configuration
I' is defined as:

EICORR(FLS) = EMCHF(FLS) - EHF(FLS)
where Eycnr is the energy associated to the wavefunction:

Yrpene(TLS)= ¥ ¢®(y,LS) (2)

complex

where the summation goes over all the CSF’s (®(y;LS)) pertaining to the Layzer
complex.

The results of the calculations are presented in Table 6. In a few cases, marked
by an asterisk, very strong interactions occur in the MCHF calculations between
two or three CSF’s. As a consequence, we cannot say that the wavefunction (2)
represents the internal correlation wavefunction of one given I'LS state, the
representation of an atomic state by one main configuration losing its sense. Let
us take the following example. For the °S state arising from the KL 3s3p°®
configuration of Cl, the Layzer complex is formed by six CSF’s. Two of them,

@(y,*S) =|KL 3s(°S)3p%('S); S} (3a)
®(y,°S) =|KL3s*("'S)3p*('D){'D}3d'(’D);’S) (3b)

strongly interact and the diagonalization of the MCHF matrix gives for the first
two roots and taking only into account the main weights:

W oenr(l) 2S) = 0.802734D(y, 2S)+0.572659d( 1y, °S) (4a)
W 2T, 28) = 0.544424P( v, 2S) —0.794771D(y, °S). (4b)

So that following Kaufman [23], we should talk about the states () and (7)
instead of the states ®(y, >S) and ®(y, >S).

The associated energies are:
Encur(T 28) = —459.1741 a.u.
Ecy(T,%S) =—458.7146 a.u.

2 This function is the second eigenvector of the interaction matrix constructed with the orbitals
optimized for the T, 2S state and hence cannot be a MC solution for the I', S state
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Table 6. Atomic data for the chlorine atom {a.v.)

381

Configuration  State System —Egxp —Eyr —Encnr —FEtorr —Ek
KL 3s%3p® 'S Cl- 461.5214 459.5769 459.6778 0.1009  1.844
35%3p3 Zp Cl 461.3872 459.4821 459.5847 0.1026  1.802
3s5%3p* *p crr 460.9105 459.0486 459.1470 0.0984  1.763
D 460.8589 458.9845 459.0867 0.1022 1.772

'S 460.7850 458.8892 458.9719 0.0827 1813

35%3p® ‘S (oias 460.0369 458.2265 458.3067 0.0802  1.730
D 459.9544 458.1227 458.2176 00949  1.737

2p 459.9007 458.0543 458.1334 0.0791  1.767

35%3p? ’p cPt 458.4328 456.7889 456.8618 0.0729  1.571
'D 458.5184 456.7160 456.7916 0.0756  1.727

'S 458.5770 456.6082 456.6573 0.0491  1.920

3s%3p 2p 456.6117 454.8616 454.9080 0.0464  1.704
3s? IS 4541239 452.4098 452.4677 0.0579  1.656
3s3p° g Cl 460.978° 458.9168 459.0231%  0.1063  1.954
3s3p° ’p crr 460.4851%  458.5227 458.6132%  0.0905  1.872
P 460.2052 458.2746 458.28932  0.0147 1916

3s3p* ‘P (@i 459.5863 457.7479 457.8620 0.1141 1724
D — (1.84)

p — (1.96)

25 — (1.72)

KL 3s3p® ’S CP+ 458.2849 456.5503 456.5771 0.0268  1.708
D 458.1126 456.3005 456.4183 0.1178  1.694

*p 458.0331 456.2278 456.3332 0.1054  1.700

38 457.8306 455.9975 456.1109 0.1134  1.720

'D 45799182 456.0259 456.1131* 00872 (1.72)

p 457.8214 455.9543 456.0849 0.1306  1.736

3s3p? p CI** 455.8937 454.1190 454.2096 0.0906  1.684
‘p 456.2204 454.5497 454.5668 00171  1.654

D 456.1001 454.3284 454.4312 0.1028  1.669

25 455.9481 4542149 454.2651 0.0502  1.683

3s3p ’p crt 453.6715 452.0207 452.0289 0.0082  1.643
p 453.4452 451.7239 451.7852 0.0613  1.660

3s 28 cre+ 450.5580 448.9302 — 0.0000  1.628
350 'S cre 446.3614 444.7644 — 0.0000  1.597

 See text (Sect. 5.3.3)

Inversing Eqgs. (4a) and (4b) and making a Lowdin orthonormalization® we obtain:

®(y; °S) = 0.819514¥(T, 2S)+0.573059¥ (T, 2S)
D(y, ’S) =0.573059W(T, °S) ~0.819514¥ (T, °S)

and finally the requested energies

E(y,%S)=-459.0231 a.u.
E(y,?S) = —458.8654 a.u.

3

This orthonormalization is imposed by the neglect of the 4 remaining CSF’s
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so that the approximate internal correlation energy of the ®(y, °S) state is
E(v,°S) — Eyg(y, ’S) = —459.0231+458.9168 = —0.1063 a.u.

The calculation of the internal correlation energy of three other states,
KL 353p°('D), KL 3s3p°(’P) and KL 353p°('P) also exhibited strong interactions
between CSF’s.

In the first two cases we proceeded in the same way as we had done for the
KL 353p°(>S) state. Unfortunately, in the third case, the MCHF calculation did
not converge and so we had to resolve the problem by means of a CI calculation
performed with the orbitals of a E,y calculation of the three interacting CSF’s.

5.3.4. Atomic exact non-relativistic energies and error energies

For the chlorine atom (Z=17) and its ions considered here (N =18 to 14), no
values for exact non-relativistic energies (ERy) are available since the tables of
Scherr et al. [24] (SSM) are limited to Z =20 and N = 10. Consequently, we tried
to obtain such values through the relation

EE;({: Eex — ErgL (5)

using the recent experimental energies (Epx) of Bashkin and Stoner [25] and
evaluating the relativistic energies (Egg.) by

Egpr= Ecur— Eue (6)

E.ur' being the total (relativistic) energies of Fraga et al. [26]. Afterwards, using
the internal correlation energy values (Etorg) of Verhaegen and Moser [27a],
we calculated, as a test, the non-internal correlation energies (Egorg) for the
C(®P) isoelectronic series according to the relation

g(I)RR: Eg)r({_EHF—EEORR- (7)

As can be seen from Table 7, those ENorr values (Eforr(1)), even approximately
corrected for lamb-shift (LS) (Egorr(2)), exhibit an incorrect behavior as Z
increases i.e. decrease for large Z instead of reaching a constant value.

Oppositely, the Egorg values (Ecorr(3)) used previously [27] and based on the
SSM ERE values exhibit a correct Z-dependancy, even for Z= 10. It seems thus
that the experimental fitting performed by SSM to obtain Efx values is more
appropriate than the direct ab initio determination of the relativistic contributions
(relations (5) and (6)).

In order to avoid the difficulty of calculating reliable total relativistic corrections
and hence reliable Ery values, we propose to transfer in the molecule not only
the atomic non-internal correlation energies but also the atomic experimental
relativistic energies leading (see Fig. 2) to the definition of a new concept, the
error energy (Ey)

Eg= Egcl)mﬁ‘ Erer = Egx — Eycar (8)

4 “cHF” stands for “corrected Hartree-Fock”
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Table 7. Z dependence of non-internal correlation energy for C(*P) isoelectronic sequence (a.u.)

15°25%2p*CP) Z —Egx ~Eqp LS® 'EICORR _EE(I)RR(I) ‘“EEI(I)RR(z) _EEE)RR(?))
C! 6 37.8574 37.7007 0.0014 0.0173  0.1394 0.1408 0.139
NI 7 540795 53.9138 0.0025 0.0216  0.1441 0.1466 0.145
ot 8 733204 73.1485 0.0040 0.0253  0.1466 0.1506 0.149
v 9 955771 95.4023 0.0060 0.0287  0.1461 0.1521 0.153
NeV 10 120.8517 120.6763 0.0086 0.0320  0.1434 0.1520 0.156
MgV 12 180.4658 180.2965 0.0158 0.0385  0.1308 0.1466 0.161
Sit* 14 252.1969 252.0423 0.0259 0.0448  0.1098 0.1357 0.165
28 15 292.6218 292.4757 0.0321 0.0481  0.0980 0.1301 0.166

? Approximate lamb shift values [27]

which can be easily evaluated provided that Egx values are available. The
underlying hypothesis is that relativistic energies are transferable for Z < 20 which
is a reasonable hypothesis [10a]. The establishment of Eg tables according to
relation (8) will be discussed in the next section. Finally, in Table 8 we compare
the contribution of E &grg and Eg to the dissociation of some molecules containing
second row atoms. The perfect agreement observed shows the consistency of the
new semi-empirical data tables (Eg) with those used up till now (E&orz).

Fig. 3 gives a complementary illustration of this consistency by showing the quite
parallel variation of error and non-internal correlation energies, calculated at a
fixed value Z=10, as a function of the electron number. This parallelism shows
also clearly that the relativistic contributions Egg; are independent of the occupa-
tion number of the 2p electrons and only slightly dependent on the number of
2s electrons (see the variation from 2 to 4 electrons in the figure) and the reason
why therefore the transferability of the relativistic contributions is plausible. The

Table 8. Comparison of ENyrg and Eg contribution to the
dissociation energy of some molecules containing second
row atoms (eV)

Dissociation process AEDL:x AE;
H,-2H 0.53 0.54
N,->2N 1.19 1.17
0,-20 0.35 0.36
F,-2F 0.13 0.10
H,0-H,+0 0.66 0.66
NO->N+0O 0.795 0.78
CO-C+0 0.84 0.85
C,»2C 0.74 0.75
C0O,»>CO+0 0.585 0.58
CN->C+N 1.15 1.14
C0O,-»C+20 1.43 1.43
H,0->0+2H 1.19 1.20
HCN->H+CN 0.87 0.89

HCN-H+C+N 2.02 2.03
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electron number

Fig. 3. Variation of non-internal correlation energies and error energies as a function of electron
number (at Z=10)

Z =10 value has been chosen for that illustration as the greatest Z value for which
the 2s and 2p electrons are effective valence electrons. Obviously the same
parallelism is not observed for larger values of Z as a consequence of the
importance of the relativistic effects of the inner shells in the corresponding
atoms. However, such cases are not encountered within the chemical applications
area we usually consider.

5.3.5. New atomic semi-empirical data tables

Error energy (Eg) tables were constructed according to relation (8) (Sect. 5.3.4)
where Egx for a LS state arising from a configuration I’ with N electrons was
explicitly calculated as

Y (2J+ DT,(TLSJ; N)

N
Eex(TLS,N)=— Y I(I'L'ST o pnas 1)+
ex( ) E]( hrounds 1) S @D
J

where the ionization potentials (I) of the lower J' state of the I'" configuration
with n electrons and the terms (T,) of the J states were taken from Bashkin and
Stoner (BS) Grotian diagrams [25].

i) Second row atoms. Results of Eg are presented in Tables 9, 10 and 11 for all
states arising from the configurations 15°2s"2p™ (n=0, 1,2; m =0 to 6). Several
values (indicated in parentheses) were extrapolated or interpolated due to the
lack of experimental data. As a consequence, the use of Eg values derived above
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allows us to estimate some missing term energies in BS’s tables. It should be
pointed out that the error limits on these estimations depend only on the quality
of the Eg extrapolation so that for high term values, the relative uncertainty is
very small (<0.05%). The results for estimated terms are presented in Table 12
and compared with those from Verhaegen and Moser (VM) [27a] proceeding
from similar extrapolations of EQorg values; most of the time a nice agreement
is observed between both results.

Moreover, the term energies for the states 1s*2p*'D (at Z=11) and 'S (at Z=14)
presented here as well as those previously estimated by VM are in complete
disagreement with BS’s values. This disagreement could result from an incorrect
assignment of the spectroscopic states in BS’s tables.

Table 10. Error energies for states arising from 1s>2s2p” configurations (a.u.) ( ): Interpolated or
extrapolated value

V4 Li(S) Be(CP) Be('P) B(*P) B(®D) B(*S) B(*P) C(S) C(D) C(P)

3 0.046

4 0.049  0.058  0.081

5 0.054 0.064 0.107 0.078 0.130 0.122  0.150

6 0.062 0073  0.120 0.087 0.139 0139 0159 0105 0.171 0.177

7 0.074  0.087 0.136  0.101 0.154  0.149  0.176  0.121 0.186  0.187

8 0.094 0107 0.157 0122  0.176 0.170  0.199  0.141 0.208  0.208
9 0.123 0.137  0.189  0.154  0.208  0.201 0232  0.172 0240  0.238

10 0.164 0.180 0.232 0.198 0.253 0245 0277 0214 0284  0.28]

11 0222 0239 0292 0263 0315 0307 0339 0275 0346 0343

12 0299 0317 0368 0335 0393 038 0418 0355 0426 0422

13 0399 0418 0470 0439 0499 0493 0523 0466 0534 0529

14 0.527 0549 0599 0574 0.634 0.627 0658 0.605 0673  0.667

15 0.687 0708 0.760 0.746  0.802 0799 0829 0786  0.851 0.843

16 0.886

17 1.127

V4 c(s) ¢('D) C('P) N(*P) N(D) N(*S) N(P) 0(P) O('P) F(S)

0.221 0.244 0219 (0.227) (0.277) (0.284) (0.314) (0.337) (0.368) (0.463)

0244 0264 0257 0246 0298 0297 0332 0354 (0.391) (0.479)
9 0276 0295 0287 0276 0328 0322  0.361 0383 0424  0.504
10 0.321 0339 0.331 0317 0371 0363 0400 0423 0483  0.538
11 0.384 0402 0394 0377 0429 0421 0.458  0.484  0.541 0.594
12 0.465 0482 0473  0.451 0.508 0499 0.537 0563  0.619  0.670
13 0.572  0.589  0.581 0.561 0.615  0.606 0.644 0669 0725 0.772
14 0.711 0.727 0718 0700 0762  0.754 0790  0.806  0.862  0.906
15 0.890  0.904  0.893 0.878 0.942 0939 0970  0.981 1.036 1.078
16 1.100 1.152 1.144 1.178 1.199 1.254 1.201
17 1.374 1.417 1.410 1.440 1.469 1.539 1.556

3
4
5
6 0.233 0.242 0.196 (0.218) (0.266) (0.278) (0.305) (0.329) (0.355) (0.456)
7
8
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ii) Chlorine atom. The Eg values for chlorine atom presented in Table 6 were
obtained exactly in the same way as those for second row atoms. However, several
remarks should be made concerning this Table.

First, for the configurations KL3p"(rn=1 to 6) no experimental energies are
available in BS’s tables. Since we did not, up till now, systematically calculate
Eg values for KL 3s"3p™ configurations at various Z values, no extrapolation
or interpolation is possible. Consequently the corresponding Eg values were set
to zero in the molecular calculations. In fact their contributions to the molecular
error energy are expected to be negligible, their weights in the decomposition of
the zeroth-order wavefunction being very small (for instance «107¢ for CIO).
Secondly, for the states *D, *P, °S arising from the configuration KL 353p* no
experimental energies are available either. Consequently, the Eg values were
estimated with respect to the corresponding Eg values in Argon (Z=18).

Finally for the KL 3s3p*('D), KL3s3p°("P,°P) and KL 3s3p°(*S) states which
are in fact far from being pure states, transformations using MC coefficients

Table 12. Addenda to Bashkin and Stoner tables

T, (cm™)? T, (cm™)? T, (em™)
V4 Conf. State this work VM BS
5 15%2p° D (97500) (97350)
Zp (109500) (105440)
6 1s%2p* 3p (154700) (155170)
'D (159500) (159740)
s (184800) (185420)
7 1s%2p* 3p (219400) (219820)
D (229100) (229280)
S (264400) (265270)
1s%2p* Zp (232000) (235380)
1s22s2p* ‘p (87500)
D (121400) (120880)
s (141900) (159840)
Zp (157200) (157090)
8 1s%2p° p (316600) (318530)
152252p° P (183500)
10 1s%2p? D 317700200 317600 200
s 393300200 392800200
1s2p* D 436600 200 436600 =300
'S 500500 % 200 501000+ 300
11 1s%2p* 'D 506200 = 200 506200+ 400 539430
14 1s%2p* 'S 819800 + 200 818100900 669562
15 1s%2p* *p 743900 + 400 742700+ 700
‘D 791200 + 400 789100900
's 900500 = 600 898800+ 1100

2 Terms indicated in parentheses are “‘uncertain” as a consequence of the delicate extrapolations
performed at low Z values (see Ref. [27a])
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discussed in Sect. 5.3.3 were used to connect the experimental energies, Exx(V),
to the monoconfigurational energies Epx(®) used to calculate Eg.

6. Conclusion

In this work, we have presented an extension of an economical method of
calculation of the molecular correlation energy, developed in previous work.
The extension concerns the applicability of the method to third row atoms and
an analysis of its consequences at the three levels of energy partition, i.e. the
zeroth-order energy, the internal and the non-internal correlation energies. The
particular points that have been investigated are: the optimization of polarization
and correlation 3d orbitals, the influence of these 3d orbitals on the “atoms-in-
molecule” expansion of the zeroth-order wavefunction and the determination of
the required atomic semi-empirical data together with the definition of the new
concept: the error energy. Direct semi-empirical tables of error energies were
determined without having to introduce the artefact of an approximate extraction
of the relativistic contributions from the experimental energies.

In this paper, the chlorine atom has been chosen as a test for the above methodo-
logical advances. Molecular applications devoted to the ClO, HCI, HCI* and
NCI molecules are presented in a second paper, in which it is shown that the
economical features and the reliability of the method are preserved. However,
all the conclusions presented here may be extended to any other third row atom
so that many applications to molecules containing any third row atom may be
expected in the near future.
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